
Getting Sessions

Using org.openntf.domino.utils.Factory

The standard way to get a Session is using . still works for getting the Factory.getSession(SessionType) Factory.getSession()
current session, but is discouraged in favour of more explicit usage of SessionTypes. There are a number of standard SessionTypes, the most
common developers use are and (a session running as the server). XPages developers will SessionType.CURRENT SessionType.NATIVE
be used to and , but in personal experience the server typically has relevant SessionType.SIGNER SessionTyp.SIGNER_FULL_ACCESS
access in order for replication etc to work effectively.

The full list of SessionTypes is:

CURRENT - A named Session for the current user
CURRENT_FULL_ACCESS - A named Session for the current user but with full access
SIGNER - A named Session for whichever Notes ID is defined as the current application''s signer
SIGNER_FULL_ACCESS - A named Session for whichever Notes ID is defined as the current application''s signer with full access
NATIVE - A Session based on the current server''s access
TRUSTED - Returns a Trusted Session, not yet implemented
FULL_ACCESS - A Session equivalent to Full Access Administration setting in Domino Administrator
PASSWORD - A Session based on a specific Notes Client user ID and password

XPages Factory Setup

The Factory is automatically initialised with various current, signer and native SessionTypes. So you can just use the various Factory.
 methods. In addition, global implicit variables are set up for every request. You will already be aware of some of getSession(SessionType)

these implicit variables that are set up by the XPages runtime - , , and session sessionAsSigner sessionAsSignerWithFullAccess data
. If the "godmode" switch is enabled, ODA overrides these implicit variables to replace them with the corresponding ODA session and base

database objects. Otherwise, ODA creates , , and openSession openSessionAsSigner openSessionAsSignerWithFullAccess openDat
.abase

ODA Starter Servlet

ODA Starter Servlet has an ODADataServlet class which manages all the setup and tear down of the Factory, adding . SessionType.CURRENT
 is automatically available. If other session types are required, you will need to set them up for each request here.SessionType.NATIVE

CrossWorlds

CrossWorlds uses a Filter to filter all HTTP requests for any web application, see bundle's org.openntf.xworlds.core org.openntf.
. This uses configuration to set up Sessions for the current user and the application xworlds.appservers.webapp.XWorldsRequestFilter

signer, see . You can extend this class in org.openntf.xworlds.appservers.webapp.config.DefaultXWorldsApplicationConfig
your web application to change the base functionality.

OsgiWorlds

If you want to use ODA in a web servlet with Vaadin development, can be used. This uses an approach specifically for Vaadin OsgiWorlds
development, extending the VaadinServlet class and its method, see . This uses service org.openntf.osgiworlds.ODA_VaadinServlet
configuration to set up Sessions for the current user and the application signer, see org.openntf.osgiworlds.

. Remember to register the servlet in the normal Vaadin way (the older method is in web.xml, the newer DefaultDominoApplicationConfig
method is using @Annotations in the application's main UI class.

OSGi Web Applications

For a web application, if it uses a REST servlet as the entry point, you can use from the ODA Starter Servlet as a basis to ODADataServlet
initialise the NotesThread and set up the Factory and ODA sessions. If it uses an HttpServlet entry point, you can use the ODA_VaadinServlet
from OsgiWorlds as a basis (the VaadinServlet class extends). javax.servlet.Http.Servlet

DAS Servlet

The ODA graph REST API uses an extension to , implementing the REST service extension com.ibm.domino.das.service.RestService c
, see class. This class's om.ibm.domino.das.service.IRestServiceExt org.openntf.domino.rest.service.ODAGraphService

 method initialises the thread for ODA and creates a Session as the current user using the beforeDoService org.openntf.domino.xsp.

https://openntf.org/main.nsf/project.xsp?r=project/OsgiWorlds

 class to retrieve the current user and current database from the Domino browser session. The session.DasCurrentSessionFactory befor
 method terminates the thread for ODA. The same classes can be used for custom REST servlets and was a basis for ODA Starter eDoService

Servlet.

	Getting Sessions

